
Evaluation of nuclear reaction cross sections for the production of ⁹⁰Y via charged particle induced reactions.

Noor Ul Ain Government College University, Lahore.

Introduction

Nuclear medicine is a specialty of medicine which uses radioactive material for diagnosis and treatment of diseases according to the decay properties of radionuclides.¹

Theranostic = Therapeutic + Diagnostic

Yttrium-90

⁹⁰Y is a therapeutic radionuclide. Use: Targeted therapy for Liver Cancer.

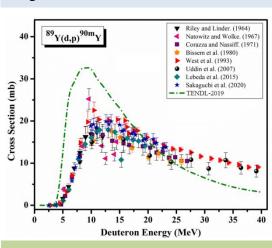
Half-Life	2.67 d
Decay Mode	Pure β ⁻ emitter
E_{β} (MeV)	0.93 - 2.27 MeV
Range	2.5 - 11 mm

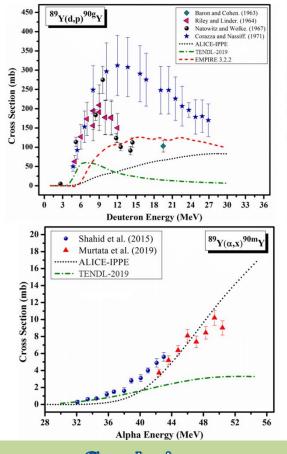
Methodology

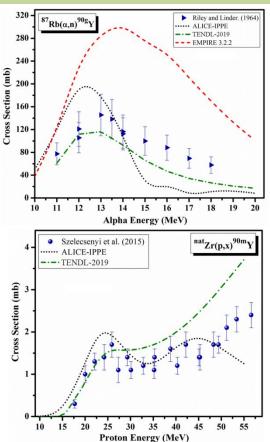
Theoretical calculations of crosssection using nuclear model codes for production of $^{90}\mathrm{Y}$

- ALICE-IPPE
- TALYS 1.9
- EMPIRE 3.2.2

Comparison of experimental data with theoretical results to obtain most suitable production route.


Cross-section is probability of a nuclear reaction to happen via interaction of incident particle and target.


Results and Discussion


In this study nuclear reactions are selected on basis of two parameters

- Energy of projectile
- Nature of projectile

Projectile should be a charged particle, i.e., alpha, proton, deuteron, ³He etc. and the energy of projectiles must be in range of 0-100 MeV.

Conclusion

- Maximum values of cross sections were observed for reactions ${}^{87}\text{Rb}(\alpha,x){}^{90}\text{Y}$ and ${}^{89}\text{Y}(d,x){}^{90}\text{Y}$.
- There is need to perform more experiments to study production routes with maximum yield and minimum impurities.